Energy flexibility using the thermal inertial of Swedish single-family houses

Huijuan Chen, Svein Ruud (E2B2 project)

RISE Energy and Resource

2023-11-17

Energy flexibility in buildings

"The **flexibility** refers to the deviation of energy demand against normal operation of buildings mechanical systems during grid peak hours" (Zhang et al., 2018)

- Reduce the energy demand at peak hours (peak shaving)
- Shift the energy consumption from peak to off-peak hours (load shifting)

Swedish building stock – single-dwelling buildings

Småhus avser friliggande en- och tvåbostadshus samt par-, rad- och kedjehus (exklusive fritidshus). **Data source**: SCB Statistikdatabasen

About 2 million single family houses in Sweden, out of 1.3 million have some form of electrical heating system.

Space heating for single-family houses has a great potential of energy flexibility and has higher power capacity than other household devices.

Energy flexibility using the thermal inertial of Swedish single-family houses

Overall goal:

- Explore the potential of using thermal mass a resource to increase energy flexibility for different types single-family houses
- Quantify the characteristics of energy flexibility in relation to building typologies
- Focus on heating energy (heating need, heating demand)

Energy flexibility in buildings mainly depends on:

- Insulation level
- Heat distribution systems
- Type of ventilation
- Weather

RI. SE

Method

Using IDA-ICE as a tool (Prototype including renovation) IDA Indoor Climate and Energy Building, its systems, and controllers Detailed, dynamic simulation

Define simple control strategies to modulate the heating power (Set-point: 21±2°C)

Case studies Winter (very cold, cold day) Spring/autumn day

Shiftable heating demand/thermal energy during peak hours

Reference case Flexibility control cases

Input data

Parameters (BETSI+assumptions)

- U-value, ∑UA/Atemp
- \circ Ventilation
- Heat emitter
- $\circ~$ Air tightness (infiltration rate)

Location: Borås

Weather: design reference year 1991-2020 (SMHI-SVEBY)

House category (BETSI)

- o **2010-**
- o **1996-2009**
- o **1986-1995**
- o **1976-1985**
- o **1941-1975**
- o **1940-1960**

Examples of input data

	2010-	1961-1975
Building envelop U _{ave}	0.26 W/K m ²	0.49 W/K m ²
UA _{tot}	85 W/K	160 W/K
U _{walls}	0.17 W/K m ²	0.31 W/K m ²
U _{ceiling}	0.11 W/K m ²	0.23 W/K m ²
U _{floor}	0.15 W/K m ²	0.32 W/K m ²
U _{window}	1.2 W/K m ²	1.6 (2.3) W/K m ²
Ventilation	Exhaust ventilation	Natural ventilation
Air flow rate	0.35 (l/s m ²)	About 0.25 (l/s m ²) during winter (from IDA)
Air tightness q ₅₀	0.4 (l/s m ²)	0.8 (l/s m ²)
Heat distribution system	Floor heating + water radiator	water radiator
Internal heat load (people, equipment)	30 kWh/m2 year	30 kWh/m2 year
Space heating demand (from IDA-ICE)	84 kWh/m2 year	116 kWh/m2 year

Flexibility control strategies

Preliminary results: temperature decay

Case study:

- Turn off heating at 05:00
- A cold day
- Temperature decay for living room and kitchen

Results

- Insulation
- Floor heating or radiator
- Ventilation + infiltration

RI. SE

Preliminary results: Δ **heating power**

Deviation of the heating power from the ref. House 2010-, a cold day

Control strategy:

- Control 1: 19 °C (non-occupied hours)
- Control 2: 21 °C (non-occupied hours)
- Control 3: 23 19 °C
- Control 4: 23 21 °C

Deviation of the heating power from the ref. House 1961-1975, a cold day

Shiftable heating demand Wh = \sum (heating power - ref. case) during the peak hours

shiftable heating demand % = shiftable heating demand/total heating demand for the reference case where Troom = 21 °C.

Preliminary results: flexibility of heating demand

Shiftable heating demand in %

Flexibility of heating demand

For a very cold day

• house 2010- provides higher flexibility potential.

For a spring/autumn day

• the potential is higher with 1961-1975 house.

More heating energy is moved during winter than spring/autumn due to higher heating demand.

Results could be relevant for houses connected to district heating

Preliminary results: flexibility of electricity

Exhaust air heat pump for house 2010-

COP ≈2.5, Qheating power ≈4 kw

COP ≈3.7, Qheating power ≈1.3 kw

Ground source heat pump for house 1961-1975

COP ≈ 3, Qheating power ≈8 kw

COP ≈ 3.6, Qheating power ≈ 3.6 kw

Thank you for your attention!

Questions and suggestions?

Huijuan Chen

010-516 54 22

Huijuan.chen@ri.se