

Luftrening som komplement till ventilation

IEA EBC Annex 78 - Supplementing Ventilation with Gasphase Air Cleaning, Implementation and Energy Implications

Sasan Sadrizadeh

PhD, Docent, Professor

KTH & MDU ssad@kth.se

Annex 78 team members

KTH:

- Sasan Sadrizadeh, PhD, Prof.
- Sture Holmberg, PhD, Prof. em, BFD
- Christophe Duwig, PhD, Prof
- Adnan Ploskic, PhD
- Behrouz Nourozi, PhD

Reference group: BeBo, Belok, Installatörsföretagen, Bravida

Introduction and background

- Ventilation systems are important for maintaining a healthy and comfortable indoor environment.
- In cold climates, ventilation systems contribute to approximately 30% of building heat losses.
- Indoor emissions and outdoor pollutants affect indoor air quality and need to be controlled by ventilation.
- Gas-phase air cleaning as an extension to the ventilation might help maintain acceptable indoor air quality, yet reduce energy use.
- Based on Swedish building regulations for residential buildings, recirculation of ventilated air is **not allowed**.

Investigated parameters

- Heating demand of a ventilated building.
- Indoor TVOC level (with 60% capturing efficiency).
- Indoor **CO₂ level** as a monitoring parameter.
- Possibility of air recirculation when air cleaner is integrated.

Simulation case

- <u>Newly</u> constructed or renovated buildings <u>with</u> heat recovery ventilation.
- <u>Older</u> buildings <u>without</u> heat recovery ventilation.
- Residential and office Buildings with various ACH.

Energy simulation using TRNSYS

Nourozi, Behrouz, et al. "Heating energy implications of utilizing gas-phase air cleaners in buildings' centralized air handling units." *Results in Engineering* 16 (2022): 100619.

Simulation cases study in **Stockholm climate** equipped with <u>centralized air handling</u> unit (2000 m²_{vent. area})

Energy in Buildings and Communities Programme

- Occupancy signal 0 50 Residential - -Office 15 5 10 20 24 Time, [h] Recirculation signal 0.5 0 5 10 15 20 24 Time, [h] Ventilation signal Daily 0 0 5 10 15 20 24 Time, [h] Ventilation signal 0 Weekly 50 0 20 40 60 80 100 120 140 160 168 Time, [h] ACH_{Office}/ACH_{Residential}=4.7
 - **Residential building** •
 - 0.45 ACH
 - Occupancy schedule

- **Office building** •
 - 2.1 ACH
 - Occupancy schedule
 - Ventilation schedule

Energy in Buildings and Communities Programme

Indoor and outdoor emission rates

Air pollutant	туос			CO ₂	
Source	Outdoor	Occupants	Interior furnishing	Outdoor	Occupants
Value	µgr.m ⁻³	mgr.h ⁻¹ .person ⁻¹	µgr.m ⁻³ h ⁻¹	mgr.m ⁻³	gr.h ⁻¹ .person ⁻¹
	110	6.3	120	720	120

Guideline values for indoor TVOC concentration

Location	Reference	TVOC concentration µg.m ⁻³			
Europe	Report EUR 14449 EN. 1992	Comfort range < 300 Multifactorial exposure range < 3000 Discomfort range < 25000 Toxic range > 25000			
Finland	Finnish Society of IAQ and Climate. 2000	Individual indoor climate < 200 Good indoor climate < 300 Satisfactory indoor climate < 600			
Germany	Federal Environment Agency of Germany	Hygienically safe < 1000 Hygienically noticeable < 3000 Hygienically alarming < 10000 Hygienically unacceptable > 1000			
Germany	Seifert B.	300			

<u>Residential</u> building (0.45 ACH)

Energy in Buildings and Communities Programme

Ventilation with heat recovery:

- The recirculation effect on heating demand is <u>negligible</u>!
- Air cleaner implementation might not be that effective!

Ventilation **<u>without</u>** heat recovery:

- The recirculation effect on heating demand is <u>small</u>!
- Air cleaner implementation might reduce building heating demand!

<u>Office</u> building (2.1 ACH)

Ventilation **<u>with</u>** heat recovery:

- The recirculation effect on heating demand is <u>notable</u> compared to the residential buildings!
- This is the case for both with and without heat recovery!
- Air cleaner implementation <u>is effective</u>!

Residential vs Office

Ventilation schedule & different ACH

Thus **ACH** is an important parameter that needs to be considered.

Residential building: Impact of <u>air recirculation</u> on TVOC concentration ($<500 \ \mu g/m^3$)

Without air recirculation

TVOC concentration is within the acceptable range

<u>With</u> air recirculation (and air cleaner)

Recirculation <u>does not</u> result in increased TVOC level (60% capturing efficiency)

Office building: Impact of <u>air recirculation</u> and <u>ACH</u> on TVOC & CO_2 concentration

TVOC concentration with 0 and 50% air recirculation

- High ACH (>0.5) maintains TVOC concentration within an acceptable range, regardless of recirculation level
- Thus, adding **air cleaner** and **recirculation** is **beneficial** to reduce building heating demand

Co2 concentration with 0 and 50% air recirculation

Recirculation % and ACH do not changes CO_2 level since the main CO_2 source is the outdoor air.

Conclusion:

- This study examines the effect of **gas-phase air cleaners** on **building heating demand**.
- The study also explores indoor **concentrations of TVOC and CO₂** when gas-phase air cleaners are used.
- Different parameters were also discussed, such as ACH, air recirculation, ventilation, and occupancy schedule on indoor TVOC and CO₂ levels.
- Increasing recirculation rate **reduced heating demand** in the office building more than in residential.
- 60% recirculation rate reduced heating demand by **9%** in **residential** and **24%** in the **office building**.
- Integrating gas-phase air cleaner and increasing recirculation rate during rush hours of mornings and evenings kept TVOC and CO₂ concentrations acceptable.
- Indoor CO₂ concentration value was affected **less than** TVOC's by increasing the recirculation rate.
- Higher ACH minimizes the impact of recirculation rate on TVOC and CO₂ levels.

Communities Programme

Engineerin

Results in Engineering 16 (2022) 100619

Contents lists available at ScienceDirect

Results in Engineering

journal homepage: www.sciencedirect.com/journal/results-in-engineering

Heating energy implications of utilizing gas-phase air cleaners in buildings' centralized air handling units

Behrouz Nourozi ^{a,*}, Sture Holmberg ^a, Christophe Duwig ^a, Alireza Afshari ^b, Pawel Wargocki ^c, Bjarne Olesen ^c, Sasan Sadrizadeh ^{a,d,**}

Luftrening som komplement till ventilation

IEA EBC Annex 78 - Supplementing Ventilation with Gasphase Air Cleaning, Implementation and Energy Implications

Sasan Sadrizadeh

PhD, Docent, Professor

KTH & MDU ssad@kth.se